
Approved for public release; distribution is unlimited

RE-TARGETING THE GRAZE PERFORMANCE
DEBUGGING TOOL FOR JAVA THREADS AND

ANALYZING THE RE-TARGETING TO
AUTOMATICALLY PARALLELIZED (FORTRAN) CODE

Pedro T.H. Tsai
Naval Research Lab, Monterey CA

Submitted in partial ful�llment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2000

Author:

Pedro T.H. Tsai

Approved by:

Debra Hensgen, Thesis Advisor

Rudy Darken, Second Reader

Dan Boger, Chairman
Department of Computer Science

iii

iv

ABSTRACT

This research focuses on the design of a language-independent concept, Glimpse,

for performance debugging of multi-threaded programs. This research extends previ-

ous work on Graze, a tool designed and implemented for performance debugging of

C++ programs. Not only is Glimpse easily portable among di�erent programming

languages, (i) it is useful in many di�erent paradigms ranging from few long-lived

threads to many short-lived threads; and (ii) it generalizes the concept of intervals

over Graze's original de�nition. Glimpse's portability has been validated by demon-

strating its usefulness in performance debugging of both Java programs as well as

automatically parallelized FORTRAN programs.

v

vi

TABLE OF CONTENTS

I. INTRODUCTION : 1

1. Motivation : 1

2. Background : 4

3. Organization : 5

II. RELATED WORKS : 7

1. Traditional Approach to Performance Debugging : : : : : 7

2. Paradyn Parallel Performance Tools : : : : : : : : : : : : 9

3. Pablo : 15

4. Delphi : 21

5. TimeScan : 21

6. Summary : 24

III. BACKGROUND ON GRAZE : 27

1. Graze Speci�cation Language : : : : : : : : : : : : : : : 27

2. Data Collection Facility : : : : : : : : : : : : : : : : : : : 30

3. Visualization Tools : 32

4. Summary : 35

IV. GLIMPSE: GENERALIZING GRAZE AND APPLYING IT TO

MULTI-THREADED JAVA PROGRAMS : : : : : : : : : : : : 37

1. Design Considerations : : : : : : : : : : : : : : : : : : : 37

2. Event Collection Code Generation : : : : : : : : : : : : : 45

3. Summary : 49

V. EXPERIENCES USING GLIMPSE WITH JAVA : : : : : : : : 51

1. Description of the StopLight Program : : : : : : : : : : : 51

2. De�ning Events and Intervals For the StopLight Program 53

3. Visualizing the Result : 57

4. Summary : 71

vii

VI. APPLYINGGLIMPSE TO AUTOMATICALLYPARALLELIZED

FORTRAN PROGRAM : 73

1. Parallelizing Programs using OpenMP : : : : : : : : : : 73

2. Adapting Glimpse to Monitor Multiprocessing FORTRAN

Code : 76

3. Results from Monitoring Parallel FORTRAN programs : 79

4. Summary : 104

VII. SUMMARY : 105

1. Future Work : 105

2. Experiences usingGlimpsewith concurrent Java and FOR-

TRAN programs : 107

APPENDIX A. OVERVIEW OF JAVA AND JAVA THREAD : : : 109

a. Overview of Java : 109

b. Java Threads and Synchronization : : : : : : : : : : : : : 110

c. Summary of Java Threads and Synchronization : : : : : 122

APPENDIX B. GRAMMAR OF THE GLIMPSE SPECIFICATION

LANGUAGE : 123

a. Grammar of the Glimpse Speci�cation Language : : : : : 123

b. Keywords for the Glimpse Speci�cation Language : : : : 125

APPENDIX C. A NOTE ON EXPERIENCE USING THE FINALIZE

FACILITY OF JAVA'S GARBAGE COLLECTION : : : : : : : 127

LIST OF REFERENCES : 131

INITIAL DISTRIBUTION LIST : 133

viii

LIST OF FIGURES

1. Data
ow diagram for the Pablo's Autopilot decision mechanism. : : : 20

2. Gorge can be used to display the interaction between threads in a mes-

sage passing application. For this example, event data from a total of

12 threads are shown, with event data from thread 0 plotted at the top

of the graph and event data from thread 11 plotted at the bottom of the

graph. The connecting lines between threads indicate the previously

de�ned Transit interval. Time increases along the x-axis. : : : : : : : 33

3. Nibble graphing the number of Sendmsg and Recvmsg events as a func-

tion of time in a message passing application. Time increases along the

x-axis. : 34

4. Nibble showing the number of Sendmsg and Recvmsg events in thread

0 and 1, and the di�erences (the lower line graph) between the number

of messages received by thread 1 and number of messages sent from

thread 0. Time increases along the x-axis. : : : : : : : : : : : : : : : : 35

5. Glimpse's Java utility classes for mapping threads to log �les. : : : : : 41

6. Steps for collecting event data: 1) code generation, 2) compiling the

monitored program, 3) loading dynamic library during execution. Ar-

row indicates dependency at the various stages. : : : : : : : : : : : : : 48

7. Plot of StartMotorArrInt intervals for experiment one. The horizontal

bar indicates the interval between when a car is started and when it

reaches the intersection. The time scale increases to the right. There

are 13 cars in this test case; they are displayed from top to bottom. : : 59

8. Plots of the StartMotorArrInt and StopAndGo intervals for experiment

one. The StopAndGo intervals are bound by + and diamond symbols.

Car 1, 3, 5, 9, 10, 12 have StopAndGo interval. : : : : : : : : : : : : : : 60

ix

9. Plot of LargeTimer and SmallTimer events with StartMotorArrInt

and StopAndGo intervals in experiment one. The symbol + and symbol

x depict when the LargeTimer and SmallTimer objects are instantiated

in the StopLight program. The �rst pair of timers is created (shown at

the top of the plot) when the Intersection object is initialized, that

is before any car objects are created. : : : : : : : : : : : : : : : : : : : 62

10. NoWaitSmallTimer interval is represented by the vertical line connec-

tion between the symbol x in the car thread and symbol x in the

SmallTimer. There are 7 NoWaitSmallTimer intervals, originating

from cars 2, 4, 6, 7, 8, 11, and 13. These intervals represent the new

SmallTimer objects created by cars that did not have to stop at the

intersection. : 63

11. Interval StimerLtChanged is shown as the horizontal bar (between sym-

bol x and symbol diamond) in timer threads. These intervals indicate

the small timers that change the tra�c light as the result of its times-

lice value expiring. The interval LtChangedAndGo is shown as a vertical

line from the right edge of the StimerLtChanged interval of the timer

thread to the right edge of the StopAndGo interval of the car threads.

These intervals represent the noti�cation received by the car threads

when the tra�c light is changed by the timer threads. : : : : : : : : : : 64

12. Plot of StartMotorArrInt intervals for experiment two. The horizontal

bar indicates the interval between when the car is started and when it

reaches the intersection. The time scale increases to the right. There

are 13 cars in this test case; they are displayed from top to bottom. : : 66

13. Plot of StartMotorArrInt and StopAndGo intervals for experiment two.

The StopAndGo intervals are bound by + and diamond symbols. Only

car 1, 5, 12, and 13 have a StopAndGo interval. : : : : : : : : : : : : : : 67

x

14. Plot of LargeTimer and SmallTimer events with StartMotorArrInt

and StopAndGo intervals in experiment two. The symbol + and symbol

x depict when the LargeTimer and SmallTimer objects are instantiated

in the StopLight program. The �rst pair of timers is created (shown

at the top of the plot) when the Intersection object is initialized,

before any car objects are created. : 68

15. NoWaitSmallTimer interval is represented by the vertical line connec-

tion between the symbol x in the car thread and symbol x in the

SmallTimer. There are 9 NoWaitSmallTimer intervals, originating

from car 2, 3, 4, 6, 7, 8, 9, 10 and 11. These intervals represent the

SmallTimer objects created by cars that did not have to stop at the

intersection. : 69

16. Interval LtimerLtChanged and StimerLtChanged are shown as the hor-

izontal bar (between symbol x and symbol diamond). The interval

LtChangedAndGo is shown as a vertical line from the right edge of the

LtimerLtChanged or StimerLtChanged interval in the timer thread to

the right edge of the StopAndGo interval in the car threads. These in-

tervals represent the noti�cation received by the car threads when the

tra�c light is changed by the timer threads. : : : : : : : : : : : : : : : 70

17. Plots of the counts of event y as a function of time. The plots are

for 4 lightweight processes using the SIMPLE schedule type under a

low system load condition. Each event y denotes the completion of a

single loop iteration. The Time increases to the right and the number

of counts is indicated on the vertical axis. : : : : : : : : : : : : : : : : 83

18. Plots of occurrences of event y for 4 lightweight processes using the

SIMPLE schedule type under a low system load condition (from the

same data as in Figure 17). Each event y denotes the completion of a

single loop iteration. The Time increases to the right. : : : : : : : : : : 84

xi

19. Plots of the counts of event Y as a function of time. The plots are

for 4 lightweight processes using the SIMPLE schedule type under a

low system load condition. The horizontal line near count value 45

shows that the count value for that particular process is not increasing

with time. This is an indication that the process is blocked during the

duration that count value is not increasing. The Time increases to the

right and the number of counts is indicated on the vertical axis. : : : : 85

20. Plots of the event y for 4 lightweight processes using the SIMPLE sched-

ule type under a low system load condition (from the same data as in

Figure 19). Each event y denotes the completion of a single loop itera-

tion. The large gap for process 0 (at the top of the graph) corresponds

to the horizontal line of Figure 19. The gap indicates that the corre-

sponding process is blocked during that period of time. : : : : : : : : : 86

21. Plots of the counts of event y as a function of time. The plots are for 4

lightweight processes using DYNAMIC scheduling under a low system

load condition. Each event y denotes the completion of a single loop

iteration. The Time increases to the right and the number of counts is

indicated on the vertical axis. : 88

22. Plots of event y for 4 lightweight processes using DYNAMIC scheduling

under a low system load condition (from the same data as in Figure

21). Each event y denotes the completion of a single loop iteration.

The Time increases to the right. : 89

23. Plots of the counts of event y as a function of time. The plots are for

4 lightweight processes using DYNAMIC scheduling under a medium

system load condition. The horizontal line indicates that one of the

processes is temporarily blocked during the execution in the Do loop.

The Time increases to the right and the number of counts is indicated

on the vertical axis. : 90

xii

24. Plots of event Y for 4 lightweight processes using DYNAMIC schedul-

ing under a medium system load condition (from the same data as in

Figure 23). Each event y denotes the completion of single loop iter-

ation. Process 0 (at the top of the graph) has the most number of

event y, i.e., it executes more iterations of the loop than other pro-

cesses. Process 3 was blocked for a period of time (as shown by the

gap between the event sequences). Consequently, it completes the least

number of iterations of the loop. : 91

25. Plots of the counts of event y as a function of time. The plots are for

4 lightweight processes using the GSS scheduling under a low system

load condition. Each event y denotes the completion of a single loop

iteration. The Time increases to the right and the number of counts is

indicated on the vertical axis. : 93

26. Plots of event y for 4 lightweight processes using GSS scheduling under

a low system load condition (from the same data as in Figure 25).

Each event y denotes the completion of a single loop iteration. The

Time increases to the right. : 94

27. Plots of the counts of event y as a function of time. The plots are

for 4 lightweight processes using the SIMPLE schedule type under a

high system load condition. Each event y denotes the completion of

a single loop iteration. The execution time of this case is signi�cantly

longer than the SIMPLE schedule, low system load case (see Figure

17). Three of the processes have �nished their loop iterations, this is

indicated by vertical lines on the left edge of the graph that reach the

count value of 100. The remaining process did not complete its work

until much later. The Time increases to the right and the number of

counts is indicated on the vertical axis. : : : : : : : : : : : : : : : : : : 95

xiii

28. Plots of event y for 4 lightweight processes using SIMPLE scheduling

under a high system load condition (from the same data as in Figure

27). Each event y denotes the completion of a single loop iteration.

The Time increases to the right. The clusters of events on the left edge

of the graph show that Processes 0, 1, and 3 have �nished their portion

of loop iterations, where as the process 2 did not complete its portion

of loop until much later, as shown by the cluster of events on right edge

of the graph. : 96

29. Plots of the counts of event y as a function of time. The plots are

for 4 lightweight processes using DYNAMIC scheduling under a high

system load condition. The Time increases to the right and the number

of counts is indicated on the vertical axis. Although the workload is

not evenly distributed among the processes, even under the high load

condition, they �nish about the same time. : : : : : : : : : : : : : : : : 97

30. Plots of event y for 4 lightweight processes using DYNAMIC scheduling

under a high system load condition (from the same data as in Figure

29). Each event y denotes the completion of a single loop iteration.

Although we request 4 processes, only 3 processes participated in the

parallel region due to high system load. : : : : : : : : : : : : : : : : : : 98

31. Plots of the counts of event y as a function of time. The plots are

for 4 lightweight processes using the GSS schedule type under a high

system load condition. The Time increases to the right and the num-

ber of counts is indicated on the vertical axis. Although we request 4

processes, only 3 processes actually participated in the parallel region.

The workload is not evenly distributed among the processes but they

�nish about the same time. : 100

xiv

32. Plots of event y for 4 lightweight processes using GSS scheduling under

a high system load condition (from the same data as in Figure 31). Each

event y denotes the completion of a single loop iteration. Although we

request 4 processes, only 3 processes (0, 1, and 3) actually participated

in the parallel region due to high system load. : : : : : : : : : : : : : : 101

33. Plots of the counts of event y as a function of time. The plots are for

4 lightweight processes using the INTERLEAVE schedule type under

a high system load condition. Each event y denotes the completion of

a single loop iteration. The execution pattern of this case is similar

to SIMPLE schedule under a high system load condition. (see Figure

27). Three of the processes have �nished their loop iterations, this is

indicated by vertical lines on the left edge of the graph that reach the

count value of 100. The remaining process did not complete it work

until much later. The Time increases to the right and the number of

counts is indicated on the vertical axis. : : : : : : : : : : : : : : : : : : 102

34. Plots of event y for 4 lightweight processes using INTERLEAVE schedul-

ing under a high system load condition (from the same data as in Figure

33). Each event y denotes the completion of a single loop iteration. The

Time increases to the right. The clusters of events on the left edge of

the graph show that Processes 0, 1, and 2 have �nished their portion of

loop iterations, where as the process 3 did not complete its portion of

loop until much later, as shown by the cluster of events on right edge

of the graph. : 103

xv

xvi

ACKNOWLEDGMENTS

I like to thank Debra Hensgen, this thesis would not have been possible without

her guidance and teaching. To my parents, for their support and understanding.

Finally, to Paul, who was my brother, mentor, and my best friend, with all my love.

xvii

xviii

I. INTRODUCTION

This thesis focuses on the design and implementation of a language indepen-

dent performance debugging suite called Glimpse. Glimpse collects pro�ling data from

the execution of multi-threaded programs and provides visualization tools to help pro-

grammers analyze the collected data. In particular, it builds upon the approach taken

by Graze [Ref. 1], a performance debugging tool that monitors C++ programs that

use the Solaris thread library. Glimpse generalizes Graze, making it both language

independent and more functional. A language independent tool is needed to permit

monitoring of many threaded programs important to the Navy as well as to all of

DoD. Examples of such programs are the Master Environmental Library (MEL),

which is written in Java; and the US Navy Numerical Weather Prediction (NWP)

applications, which are written in FORTRAN.MEL is a new system being developed

by Naval Research Laboratory (NRL) for the purpose of disseminating environmental

data over the network. It is important in such a system to dynamically identify per-

formance bottlenecks. NWP applications, on the other hand, are legacy FORTRAN

code that is being ported to high-end workstations (SGI, DEC/Alpha) and automati-

cally parallized. Here bottlenecks may arise simply from executing the code on a new

platform and, to make the job more di�cult, the people porting the code are not, in

many cases, the original programmers.

1. Motivation

The NWP applications, for example, the Navy Operational Global Atmo-

spheric Prediction System (NOGAPS) [Ref. 2] and the Coupled Ocean Atmosphere

Mesoscale Prediction System (COAMPS) [Ref. 3], predict atmospheric parameters

such as winds, temperature, pressure, and precipitation. These predictions are based

on the solution of sets of thermodynamic and
uid dynamic equations. By integrating

these equations forward in time, NOGAPS and COAMPS are able to predict the state

of the atmosphere in the near future. Because NOGAPS and COAMPS are compu-

1

tationally intensive, and the information they produce is perishable, minimizing the

execution time of these codes is paramount. Most NWP applications use some form of

parallel computing to improve their performance. Rather than reimplementing these

applications in a parallel programming language, programmers often only add com-

piler directives to legacy code. These directives cause the compiler to automatically

parallelize the code. Programmers place these compiler directives in what appears

to be the comment sections of the source code, usually near the computationally in-

tensive loop constructs. These directives indicate to the compiler that a particular

loop may be safely parallelized. The compiler will then perform data
ow analysis

and attempt to generate the necessary machine code for the parallel execution of the

loop.

MEL [Ref. 4], another example of an application that can bene�t from per-

formance monitoring, is an online digital library for environmental data and other

resources. Environmental resources are often (i) di�cult to locate, (ii) frequently du-

plicative, (iii) independently de�ned and formatted, and (iv) accessible only through

an interface that is unique to each repository. The objective of MEL is to provide

the user with a single interface that they can use to discover, query, retrieve, and

order environmental data. Conceptually, the MEL system is analogous to the card

catalog in a library. The card catalog enables the user to search the entire holdings

of the library by speci�c criteria such as topics, authors and titles. Using the emerg-

ing standards for describing geo-spatial data and contents, MEL provides a digital

metadata database for environmental resources. Since it is not practical to replicate

the existing worldwide system of distributed repositories by creating a single, massive

resource site for environmental information, the designers of MEL instead choose a

three-tier client-server architecture. The �rst tier is the user interface to the MEL

system. It consists of customers and standard WEB browsers. The second tier is

the MEL access site, which consists of both hardware and software. The MEL access

site ful�lls the dual role of handling incoming queries and orders from the customers,

2

as well as matching the queries and orders to MEL software resident on the third

tier. The third tier is composed of actual resource site databases, including their

extraction and delivery processes. MEL software is installed at each resource site to

facilitate interactions between the MEL access site and the resource sites. The MEL

Service Architecture (MSA) is the software library (API's) developed to implement

the multi-threaded servers running on each MEL access site and MEL clients running

inside the WEB browser. MSA uses the Common Object Request Broker Architec-

ture (CORBA) framework and communicates over the network via the Internet Inter

ORB Protocol (IIOP). Because there are typically many users and only a few MEL

access sites, the access site server that handles the user query and order is potentially

a bottleneck. A performance bottleneck could also occur between the MEL access

site and the resource site servers that process the requests.

MEL is an object-oriented client-server application, where as NOGAPS and

COAMPS are scienti�c FORTRAN codes requiring substantial
oating-point compu-

tation. Although the programming language used to implement MEL is quite di�erent

from NOGAPS and COAMPS, they share a common feature in that they both use a

threaded programming paradigm. Unlike a sequential program, performance bugs in

a multi-threaded program can be di�cult to �nd using the conventional performance

analysis tools. Particularly di�cult to determine are performance bugs due to thread

synchronization and communication. For example, in the automatically parallelized

FORTRAN code, a computational loop might be distributed across several threads,

with each thread working on a portion of the loop. Typically, there is an implicit

`barrier synchronization' after the end of the parallel loop; a thread that completes

its portion of work will wait until all other threads have �nished their portion of

work. If there is a load inbalance between threads, it is possible that some threads

will idle for a long time while waiting for threads that are still working. Another type

of performance bug is due to the communication overhead between threads. An idle

thread might periodically query other threads to see whether they have completed.

3

Such activity, if performed frequently, adds signi�cant overhead to the execution of

parallel programs.

2. Background

Conventional performance debugging tools (such as prof and pixie) are de-

signed to collect pro�ling information on sequential code. Pixie, an object instru-

mentation tool, adds pro�ling code to the executable. The modi�ed executable is

then run to generate information on code execution frequency. On the Silicon Graph-

ics systems, Speedshop software (an integrated front end to pixie and prof) reads an

executable, partitions it into basic blocks, and writes out an equivalent executable

program containing additional code that counts the execution of each basic block.

(A basic block is a region of the program that can be entered only at the beginning

and exited only at the end). Data collected by pixie is then analyzed by prof that

generates reports on the various statistics such as the frequency of function calls and

total percentage of time spent in each function. These conventional tools can provide

very useful and detailed information on how a program is spending its time, but they

do not provide information on interaction between threads. For example, pixie would

be able to tell us how much total time a program (all threads) spends in a parallel

loop, but it cannot tell us whether some threads are spending too much time idling

due to a synchronization barrier.

Parallel debugging tools such as Graze [Ref. 1], Pablo [Ref. 5], PSpec [Ref. 6]

and Paradyn [Ref. 7] have attempted to solve these problems. The �rst three tools

are user-controlled while the last, Paradyn, searches for types of performance problem

which have, in the past, commonly plagued parallel applications. The user-controlled

tools allow the user to collect pro�ling information during the execution of threaded

programs and to visualize the information collected so that the user gains insight into

the signi�cance of data that was collected in this manner. Furthermore, these tools

are more
exible than pixie in that they allow users to de�ne which performance data

is to be collected. In particular, Graze, PSpec and Pablo allow the user to de�ne

4

events. An event has a name and at least one numeric attribute, the time at which

the event occurred. When an event occurs, these systems record substate information

corresponding to the event. An intrinsic attribute of an event is the identi�er of the

thread in which it occurred. This attribute allows the user to distinguish events

occurring in di�erent threads. Additionally, in Graze and PSpec, a user can de�ne an

interval by specifying a designated start event and an end event. The interval is the

concept that allows the user to associate related events. In Graze, this association

can be further speci�ed by the user who requires that the two associated events have

identical attribute values (with the exception, of course, of the thread identi�er and

time). By allowing the user
exibility in deciding what performance data are to be

collected and visualized, experiments focusing on di�erent events and intervals can

be conducted.

While these tools are headed in the correct direction, more is needed. In partic-

ular, language independent techniques that are also independent of thread paradigm

would be useful. Additionally, the interval concept needs to be generalized. Build-

ing on the approach taken by Graze, this thesis shows that the event and interval

concepts can also be applied to both automatically parallelized FORTRAN program

and to multi-threaded Java programs. A working prototype of such a generalization,

Glimpse, that resulted from this research, is described.

3. Organization

The rest of this thesis is organized as follows. In Chapter II the background

and related work on parallel performance debugging are described. Chapter III fo-

cuses on the approach used by Graze. Chapter IV discusses the changes needed to

generalize Graze into Glimpse. In Chapter V, the results from testing Glimpse with a

multi-threaded Java program are presented. In Chapter VI, we describe how the same

generalization technique can be applied to automatically parallelized FORTRAN ap-

plications. That chapter also explains how Glimpse was used to gather and analyze

performance data from a computationally intense NWP application, COAMPS. The

5

�nal chapter enumerates lessons learned while designing and implementing Glimpse,

summarizes the contributions of this thesis, and describes suggested future work.

6

II. RELATED WORKS

In this chapter we describe the approaches others have taken in performance

debugging of parallel programs. In particular, we discuss several software tools that

are available in this application domain.

In section one, the traditional approaches for measuring performance of pro-

grams are discussed. In section two and three, we review two research software tools,

Paradyn and Pablo, that represent more recent developments in the area of parallel

program debugging. These tools implement dynamic instrumentation and automatic

search for performance bottlenecks, intelligent data reduction, and the idea of adap-

tive control (self-steering) systems applied to performance optimization. In section

four, we describe an integrated performance prediction, measurement, and analysis

environment. In section �ve, commercial software, TimeScan, for debugging parallel

code is described. We summarize these other approaches in section six.

1. Traditional Approach to Performance Debugging

Performance debugging can be characterized by the following activities: mea-

suring performance data from the application, analyzing the data collected to identify

bottlenecks, and optimizing the program code that causes the bottlenecks. In this sec-

tion, we discuss several approaches that are used for data measurement and analysis,

and the trade-o� between each approach.

Program Counter Sampling. This approach is also known as pro�ling. It is

widely used by the UNIX debugging tools such as prof and gprof. In this approach,

a running process is periodically interrupted by the kernel (or some external process)

to record a histogram of the program counter locations. Since each histogram bin

can be related to a basic block (function) in the program, an estimate of the total

time spent in a particular basic block (function) can be obtained by multiplying

the corresponding histogram bin value with the known sampling period. Additional

information such as call stack can also be recorded at the sampling point to provide

7

information about how the program counter gets there. This information allows the

post-processing program to compute a duration known as the inclusive time of a

function, that is the time spent in a function and all other functions that it calls.

Without the call stack information, only the exclusion time is known. The sampling

rate can be set by the user to control the resolution and the amount of data recorded.

On some systems, instead of using a timer, a hardware performance counter

can be used to trigger the program counter sampling. For example, on the SGI

R10000 systems, one can request the kernel to examine the program counter when the

hardware performance counter speci�ed by the user over
ows, and record a histogram

of the value of the program counter at over
ow. The types of hardware performance

counters that can be speci�ed for the sampling purpose are counters that record TLB

misses, primary or secondary data cache misses, primary or secondary instruction

cache misses, etc.

The data collected by program counter sampling is statistical in nature, vary-

ing from run to run. Because the data collection process is external to the program

being analyzed, no modi�cation to the source code or the object code of the program

is needed. This method has the advantage of low overhead when compared to other

data collection methods.

Basic Block Counting. This technique counts the number of times that a basic

block (function) in a program is executed. Because the counting is not a statisti-

cal measure, the observed frequencies are exact. However, the program needs to be

instrumented with code to count the number of times each basic block (function) is

executed. The instrumentation is typically performed on the object �le. For example,

on most UNIX system, an object instrumentation tool such as pixie reads the exe-

cutable �le, and writes out an equivalent �le containing additional code that counts

the number of times each basic block (function) executed. To obtain timing informa-

tion, this technique must either periodically timestamp the recorded count data, or

else use a machine model to compute the instruction cycles executed for each basic

8

block (function), and then infer the time spent in each basic block (function) from

the number of instructions executed. The time estimate obtained using the machine

model assumes that instructions are executed in an idealized condition.

Event Tracing. In this approach, a program is modi�ed to include data logging

code to record speci�c events during the execution. To instrument the program for

event tracing, one can annotate the source code and then process the modi�ed code

through a pre-compiler, which translates the programmer's annotation into actual

code. Another approach is to provide a set of event-logging API's and a library. The

programmer can then instrument the application by inserting data logging calls at

the appropriate locations in the code, and then compile the application code linking

with the event-logging library.

The types of events that can be recorded include procedure entry or exit

points, read and write function calls, or any other location speci�ed by the program-

mer. Comparing to the pro�ling and basic block counting approaches, event tracing

generates a complete sequence of events that describes the behavior of the program;

thus it is the most general instrumentation approach. Because each event must be

timestamped and recorded separately, and additional substate information must be

recorded at each occurrence of an event, the potential data volume for the event

tracing is large. Statistical techniques have been proposed as a means to reduce

the amount of the data recorded while still provides an accurate description of the

program behavior [Ref. 8].

2. Paradyn Parallel Performance Tools

Paradyn is a tool developed at University of Wisconsin-Madison for debug-

ging parallel programs [Ref. 7]. Paradyn has the following characteristics: (1) it

is designed to monitor long running program and large program with thousands of

procedures; (2) it uses well-de�ned data abstractions to describe performance related

problems; (3) it provides the ability to automatically search for bottlenecks that are

known to a�ect the performance of parallel program; (4) it uses dynamic instrumen-

9

tation to instrument only those parts of programs relevant to �nding the current

performance problem; and (5) to leverage o� existing visualization tools, Paradyne

provides a standard interface to the performance data that allows the user to incor-

porate external visualization programs for examining the performance data. In the

following discussion, we describe the approaches and components used by Paradyn

to implement the functionality listed above. The components that make up Para-

dyn are the Performance Consultant, the Data Manager, the Metric Manager, the

Instrumentation Manager, and the Visualization Manager.

Performance Data Abstractions. Paradyn uses two basic data abstractions for

collecting, communicating, analyzing, and presenting performance data [Ref. 7]. The

abstractions are the metric- focus grid and the time-histogram. A metric-focus grid

consists of two orthogonal lists of information. The �rst list is a vector of perfor-

mance metrics such as CPU utilization, memory usage, and counts of
oating point

operations. The second list, focus, is a speci�cation of a part of a program expressed

in terms of program resources. Typical resource types are synchronization objects,

source code objects (procedures), threads, and processes. The combination of a list

of performance metrics with a list of program resources forms a matrix (called a grid

in Paradyn) with each metric listed for each program resource. The elements of the

matrix can be single values, such as an average, a minimum or maximum value of a

metric, or time-histograms.

A time-histogram is an array whose buckets store values of a metric for succes-

sive time intervals; Paradyn uses time-histograms to store metric values as they vary

over time. The user can control the amount of data recorded and the resolution of

the data by setting the total number of the buckets and the width of the bucket (i.e.,

the time interval). If a program runs longer than the bucket width times the number

of buckets, Paradyn doubles the bucket width and re-bins the previous values. The

process of doubling the width of bucket is repeated each time all of the buckets are

�lled. This re-sampling technique reduces the rate of data collection and allows Para-

10

dyn to monitor long-running programs while maintaining a reasonable representation

of a metric's time-varying behavior [Ref. 7].

Automatic search of performance problems. To assist the user in locating per-

formance problems in the program, Paradyn uses a well-de�ned notion, called the W3

Search Model, that organizes information about the types of problems found in pro-

grams and the various components contained in the current programs. Performance

problems are found by searching through the space de�ned by the W3 model.

The W3 Search Model abstracts those aspects of a parallel program that can

a�ect the performance into three domains: (1) Why the application performance is

poor, (2) Where the performance problem is, and (3) When the problem occur. The

\why" axis contains common types of performance problem that occur in parallel

programs. These potential performance problems are represented as a set of hy-

potheses and tests. Each hypothesis can have sub-hypotheses, which narrows down

the performance problem to a more speci�c aspect of the program behavior. For

example, one hypothesis might be that a program is spending too much time on syn-

chronization. The synchronization bound problem can be further attributed to two

sub-hypotheses: (1) too many synchronization operations, or (2) high synchroniza-

tion blocking time. By organizing classes of performance problems into a hierarchical

order, the W3 search model allows the user to \drill down" to a speci�c cause of the

performance bottleneck.

The \where" axis represents program resources in which performance prob-

lems lie. Searching along the where axis pinpoints the problem to a speci�c pro-

gram component. Using the previous example, a \why" search might identify that

a program is synchronization bound, a subsequent \where" search may isolate one

synchronization object from among the many synchronization objects as the primary

culprit. In Paradyn, the program resources are organized into di�erent type of hi-

erarchies, each resource hierarchy representing a related group of \focuses" that can

be measured. For example, to identify which synchronization object is the primary

11

bottleneck, the search along the \where" axis starts the root of the hierarchy Syn-

cObject. The next level contains di�erent types of synchronization objects such as

the Semaphore, the Lock, and the Barrier. Below the Lock and Barrier abstraction

levels are the individual locks and barriers used by the application. The children of

Semaphore are individual semaphores used in the application. Another example of

a resource hierarchy is the Procedure abstraction, under which lies objects such as

main.c, read socket.c, write socket.c, etc. Other Paradyn resource hierarchies include

Machine (which contains sub-objects such as CPU 1, CPU 2, etc), IO, Memory, and

Process. By abstracting di�erent program resources into a separate hierarchy, Para-

dyn allows the user to concentrate on one abstraction at a time when searching for

performance problems.

The third axis of the W3 search model is the \when"-which is used to identify

at what time the application runs poorly. Programs have distinct phases of execution

and the \when" axis represents periods of time during which di�erent types of per-

formance problems can occur. For example, a program may consist of three phases of

execution: initialization, computation, and output. Within a single phase of a pro-

gram, the performance tends to be uniform. However, when a program enters a new

phase, its behaviors might change signi�cantly. As a result, decomposing a program's

execution into phases provides a convenient way for programmers to understand the

performance of their program. Searching along the \when" axis involves testing the

hypotheses for a focus during di�erent intervals of time of the application execution

[Ref. 7].

Paradyn's Performance Consultant module can automatically discover perfor-

mance problems by searching through the space de�ned by the W3 Search Model.

Re�nements are made across the \where," \when," and \why" axes without involving

the user. The search is conducted by considering a list of possible re�nements along

each axis, then ordering this list using internally de�ned hints. The Performance Con-

sultant selects one or more re�nements from an ordered list. If the selected re�nement

12

is not true, the next item from the ordered re�nement list is then evaluated. Paradyn

can conduct a fully automatic search or allow the user to make manual re�nements

to direct the search.

The Performance Consultant is also responsible for directing the data collec-

tion process. It makes requests to the Data Manager and receives performance data

from the Data Manager. The data collection process is described next.

Dynamic Data Instrumentation. Paradyn uses dynamic instrumentation to in-

strument only those parts of the program relevant to �nding the current performance

problem. Dynamic instrumentation defers instrumentation of the program until it

is in execution and then inserts, alters, and deletes instrumentation during program

execution.

Requests for dynamic instrumentation are made by the Data Manager in terms

of a metric-focus grid. The requests are translated into instructions for insertion

into the program. The translation is done in two steps. First, the Metric Manager

translates the metric-focus requests into machine independent abstractions. Next,

the Instrumentation Manager converts the machine independent representation into

machine instructions for inserting into the application.

The machine-independent abstractions are expressed using points, primitives,

and predicates. Points are locations in the application's code where instrumentation

can be inserted (currently, the points understood by Paradyn's data collection facility

are procedure entry, procedure exit, and individual call statements.) Primitives are

operations that change the value of a counter and timer, e.g., set counter, add to

counter, subtract from counter, set timer, start timer, and stop timer. Counter and

timer are the two types of instrumentation supported by Parady's Instrumentation

Manager: counter counts the frequency of some event in the application, and timer

measures the interval between events. Predicates are conditional statements that

guard the execution of primitives. They consist of a Boolean expression and an

action. The Boolean expression can be computed using counters, parameters to a

13

procedure, return values from a procedure, or numeric or relational operators.

Paradyn's Instrumentation Manager performs the translation of points, prim-

itives, and predicates into machine-level instrumentation. When Paradyn is initially

connected to an application process, the Instrumentation Manager identi�es all po-

tential instrumentation points by scanning the application binary's image. Procedure

entry and exit, as well as call to procedure are detected and noted as points. After

Paradyn is connected to the application, the Instrumentation Manager waits for the

requests from the Metric Manager. The requests are then translated into machine

code fragments, called trampolines, for insertion into the binary imagery of the ap-

plication process.

Two types of trampolines, base trampolines and mini-trampolines, are used.

A base trampoline is inserted as follows. The machine instruction at the instru-

mentation point is replaced with a branch to the base trampoline, and the replaced

instruction is relocated to inside the base trampoline. The base trampoline contains

calls to mini-trampolines. The calls to mini-trampolines can occur both before and

after the relocated instruction. A mini-trampolines is code that evaluates a speci�c

predicate or executes a single primitive [Ref. 7]. Paradyn's Instrumentation Manager

is responsible for generating the appropriate machine instructions for the primitives

and predicates requested by the Metric Manager, and then transfering these instruc-

tions to the application process via a variation of UNIX ptrace facility. 1

If the Performance Consultant determines from the data collected that a hy-

pothesis is no longer valid, the primitives and predicates associated with testing that

hypothesis can then be removed from the application process by the Instrumentation

Manager.

Open Interface to the Performance Data. Once the instrumentation has been

1ptrace, process trace, is a UNIX system call that allows the parent process to control the

execution of a child process. The parent can examine and modify the \core image" of a child process

in the stopped state, and then cause the child process to continue. The UNIX debugging tool dbx

uses ptrace to implement a breakpoint in the user's program.

14

inserted into the application, the data is sent back to the Data Manager for process-

ing by other Paradyn modules. Paradyn provides a library and remote procedure

call interface to access the performance data in real-time. Visualization modules

(visi's) are external processes that use this library and interface. When a visi re-

quests performance data from Paradyn, that request is sent to the Data Manager. If

the request data is already being collected, the Data Manager will send the current

values to the visi, and provide continuous updates as additional data are collected.

If the requested data is no being collected, the Data Manager will request that the

Instrumentation Manager start collecting it. Paradyn currently provides visi's for

time-histogram plots, bar charts, and tables. The visi interface and library also can

provide performance data for other uses, such as evaluating performance predicates

for application steering, or logging performance data for experiments [Ref. 7].

In addition to Paradyn's basic data type, counter and timer values, perfor-

mance data from external sources can also be collected. For example, some systems

provide hardware-based counters that collect statistics on page faults, data cache

misses, instruction cache misses, and memory usage activity. Data from these ex-

ternal sources can be integrated into the Paradyn instrumentation, and subjected to

the same predicate evaluation as other performance metrics. For example, if a sys-

tem provides a counter for the cumulative number of page faults in a process, then

Paradyn's Data Collection Facility can read this counter before and after a proce-

dure executes to determine the approximate number of page faults occurring in that

procedure.

3. Pablo

Pablo was created by a research group at the University of Illinois at Urbana-

Champaign. In this section we describe some of the work done by the Pablo group in

the area of performance analysis of parallel systems. In particular, we describe these

research on closed loop adaptive performance systems, and in the area of intelligent

15

performance data reduction to minimize the overhead associated with performance

instrumentation.

The motivation behind the development of adaptive performance monitoring

and application-steering systems comes from the following observations [Ref. 9]:

1) The traditional performance debugging processes are characterized by the

following activities: (a) Application code is instrumented automatically by object

code modifying programs or by compilers, or manually by inserting calls to the in-

strumentation library. (b) After instrumentation, performance data are captured

from running one or more program executions. (c) The performance data are visual-

ized and analyzed by the programmer to identify the bottlenecks. (d) Finally, based

on measurement and analysis, either the program code that causes the bottleneck is

modi�ed or the runtime system policies are adjusted to better match the program

resource requests.

2) As parallel computing evolves from homogeneous parallel systems to dis-

tributed collections of heterogeneous systems, application tuning and optimization

problems become more complex. The time-varying resources of computational envi-

ronments further exacerbate these problems. Moreover, the performance of parallel

application is sensitive to slight changes in the application code, and to continually

evolving system software.

3) Although e�ective for application codes with repeatable behavior, the tra-

ditional post-mortem tuning model is ill-suited to the parallel application with time

varying resource demands that executes in a distributed heterogeneous environment.

Not only may the execution context not be repeatable across program executions,

resource availability could change during execution.

To address the issues of heterogeneous and dynamic computing environments,

the Pablo group has developed a close loop performance analysis and adaptive control

system. This system, called the \Autopilot" ([Ref. 8], [Ref. 9]), contains the following

components:

16

(1) Decision procedures that determine how and when the system should ad-

just resource allocation policies and system parameters. (2) Distributed performance

sensors that collect performance data for decision procedures. (3) Resource policy

actuators that implement changes to the system parameters and policies in response

to decisions.

Fuzzy Logic Decision Procedures. The Autopilot's decision procedures accept

data from distributed sensors as inputs and use actuators to implement the results of

decision processes. There are several traditional techniques for implementing such a

decision mechanism, including decisions table and trees. A decision table for resource

management would typically contain one dimension for each of the key performance

sensor values (e.g., �le read request sizes and cache hit ratios). Each dimension is

then partitioned into a number of operating range (i.e., small, medium, and large read

requests), and a policy and its associated parameters would be associated with each

table entry. During uses, policies are identi�ed via table lookup using the current

sensor values.

Constructing a decision table to optimize performance presumes knowledge of

precise mapping between the resource optimization policies and the sensor parame-

ters. Furthermore, as the number of sensor parameters increases, the storage space

to fully discretize the sensor space and associate policies can grow rapidly. Conse-

quently, the designers of Autopilot choose to use fuzzy logic to implement decision

procedures. The fuzzy logic system allows manipulation of linguistically described

concepts through use of common sense knowledge, e.g., �le prefetching bene�ts small,

sequential reads.

Performance Sensor. The Autopilot performance instrumentation is based on

a set of distributed sensors that extracts information from the execution application,

which may be physically distributed over the network. A sensor has a set of associated

properties that are de�ned at the time it is created. These properties typically include

sensor name, type, network IP address, and any user-de�ned attribute-value pairs.

17

Sensors can collect data in either asynchronous or synchronous mode. In the

asynchronous mode, a separate monitoring thread records the values of the program

variables of interest at intervals speci�ed by the client or at the time when the sensor

is created. In synchronous mode, the sensors are inserted in either the source code or

the object code of the application.

To reduce the amount of data collected locally by the sensor, a sensor can apply

a data transformation function to raw data before recording them. The attached func-

tions can compute simple statistics (e.g., sliding window averages) or more complex

transformations. For example, one type of transformation is to generate qualitative

�le access pattern descriptions from �le input/output request measures (e.g., con-

verting a sequence of �le seek operations to sequential, strided, or random access

description that characterize the �le I/O performed by the application).

Two additional services, a naming service and a client service, are provided

to facilitate communication between sensors and decision procedures, and between

decision procedures and policy actuators. The naming service supports registration

of remote sensors and actuators, and it handles property-based requests for sensors

and actuators by the remote clients.

The client service of the Autopilot is based on the Nexus communication layer

[Ref. 10]. Nexus creates a global address space that encompasses all processes ex-

ecuting on a network. Before a client can communicate with a sensor or actuator,

it must �rst obtain the startpoint and endpoint of sensors or actuators. Similarly,

sensors and actuators must obtain the startpoint and endpoint of their clients. The

term startpoint and endpoint refer to an address in the Nexus global address space.

Together these capabilities allow decision procedures to acquire and manage remote

sensors and actuators without knowledge of their physical location or creation times.

Policy Actuator. Autopilot actuators allow clients to modify the value of ap-

plication variables and to remotely invoke application-level functions. Typically, ac-

tuators are used to change the resource management policy (e.g, changing �le caching

18

policies). Like the sensors, actuators have associated properties such as name, net-

work IP address, and attached functions.

The following example (from [Ref. 11]) illustrates how the sensors, fuzzy

logic decision procedures, and actuators might be used to control �le prefetching in

an adaptive input/output system. A fuzzy logic controller relies on fuzzy sets to

represent the semantic properties of each input (sensor) and output (actuator). The

input values of the fuzzy variables are then mapped to the output space by a set of

IF-THEN rules.

Figure 1 shows the basic
ow of information through the fuzzy logic decision

mechanism. The Autopilot sensors provide a time-varying stream of �le read ac-

cess classi�cations. The fuzzi�cation step converts sensor inputs to a value (HIGH,

MEDIUM, LOW) for the ReadClassification fuzzy variable. The following set

of simple fuzzy rules are used to determine the value of output fuzzy variable

PrefetchingFactor:

if ReadClassification = SEQUENTIAL then

PrefetchingFactor = HIGH

if ReadClassification = RANDOM then

PrefetchingFactor = LOW

if ReadClassification = UNKNOWN then

PrefetchingFactor = MEDIUM

After defuzzi�cation, the value of the PrefetchingFactor de�nes the action taken

by an Autopilot actuator to adjust the number of blocks that are prefetched.

The rule sets used by the decision procedures are architecture independent;

neither the source of fuzzy inputs nor the sink of the fuzzy outputs is speci�ed. The

value of ReadClassification is an abstraction whose value can be bound to a sensor

value, or a classi�cation, or even the output of another decision procedure. Similarly,

PrefetchingFactor is an abstraction of an actuator, with no implicit mapping. Fur-

thermore, one can experiment with di�erent sensors, choose di�erent actuator policies,

19

Figure 1. Data
ow diagram for the Pablo's Autopilot decision mechanism.

20

or even control di�erent systems by simply binding the inputs and outputs of decision

procedures to di�erent sensors and actuators.

4. Delphi

Delphi [Ref. 12] is a new performance environment under development by

research groups from University of Illinois, Indiana University, University of Wiscon-

sin, and the Argonne National Lab. Its aim is to provide an integrated performance

prediction, measurement, and analysis environment for programmers to evaluate the

software and hardware design choices, for both existing and proposed systems. These

systems can range from a multi-threaded application running on single processor or

multiprocessor machines, to object-oriented application running in a heterogeneous

and distributed environment (e.g., CORBA applications). Delphi builds on the con-

cepts, experience, and software from several current projects, including the Pablo

and Paradyn performance analysis and measurement tools, the HPC++ and Polaris

FORTRAN compiler systems, and the Globus metacomputing system.

An important concept of Delphi is the idea of performance prediction. To im-

plement this capability, the Delphi framework includes: (1) compilers that emit code

annotated with symbolic, execution-cost expressions, and embed calls to instrumen-

tation library in the generated executable; and (2) computation models of key system

components, including task schedules, memory, I/O component, network communi-

cation. Delphi's cost model can produce bounding estimates for the various phases

of the program using the compiler- derived data on symbolic program variables and

performance measurements from the execution of the instrumented code (the latter

provide calibration data and an input-dependent aspect of program execution).

5. TimeScan

The TimeScan Event Analysis System is a commercial software tool for de-

bugging, analyzing, and tuning the performance of single or multi-process programs,

including programs using light-weight threads. The TimeScan software [Ref. 13] con-

21

sists of two components: (1) an event logging library (ELOG), and (2) a TimeScan

viewer that displays event and state information. The following describes the basic

concepts used in the TimeScane software:

event. Events are any program actions, value changes, or procedure calls that

a user wants to monitor in order to understand the behavior of the program. For

TimeScan, each type of event is identi�ed by an event ID (a unique integer value).

All events with the same event ID are interpreted as an instance of the same type of

event. When events are recorded using ELOG library, ELOG stores a record of data

for each event instance. Each logged event record contains a timestamp, an event ID,

a data type tag, and a user data item.

event trace. An event trace contains event records from a process (or a thread)

in the order in which they occurred. Each event trace is uniquely identi�ed by the

hostname, process ID, and thread ID (for program using light-weight threads.)

state. States represent time-spans that are marked by a starting and ending

event. For example, by de�ning a state between a lock-request and lock-granted event,

one can determine know how much time a program is waiting for a lock. Currently,

only events occurring in the same event trace can be used to form a state.

event log. A log �le contains one or more event traces and state information.

To use the TimeScan Event Analysis System, a user would perform the fol-

lowing steps [Ref. 13]:

1) Use the ELOG library functions [Ref. 14] to instrument the program, and

compile and link the program with the ELOG library. 2) Run the instrumented

program to generate the event log. 3) Run the TimeScan viewer to examine and

analyze the event log and state information.

The ELOG library provides functions (for C and C++ programs) to initialize

a log �le, de�ne event name and ID, de�ne state, log event, and to handle various

error conditions. The following pseudo C-code shows how one might instrument a

multi-process program with ELOG:

22

#include <stdio.h>

#include ``elog.h'' /* Header file for ELOG function prototype. */

#define START_SEND 1 /* Define event ID */

#define END_SEND 2

int main(int argc, char* argv[])

{

/* Create Event Log. */

ELOG_INIT(``network.elog'');

/* Register Events */

ELOG_DEFINE(START_SEND,``Start writing to socket'',0);

ELOG_DEFINE(END_SEND,``End writing to socket'',0);

/* Define a State called SENDMSG between events START_SEND and

END_SEND. */

ELOG_DEFINE_STATE(START_SEND, END_SEND,``SENDMSG'');

/* Create 4 child processes to do the work. */

for (i = 0 ; i < 4; i++) {

status=fork();

if (status == 0) break; /* child process */

}

if (status != 0) exit(0); /* Parent exits. */

/* Allocate a memory buffer for the event trace. Each thread or

process has its own memory buffer. */

ELOG_SETUP(``network.elog'',0,0);

/* Log the Starting event. */

ELOG_LOG(START_SEND, 0);

write_to_socket(data);

/* Log the ending event. */

ELOG_LOG(END_SEND, 0);

/* Flush the buffer to event log file. */

ELOG_OUTPUT();

}

23

The call to ELOG INIT initializes the log �le. Next, we de�ned the START SEND

and END SEND event, and a state bounded by the two events. After the call to

fork(), the parent process exits and the four child processes continue to execute.

The �rst thing the child process does is to call ELOG SETUP. The ELOG SETUP

allocates a memory bu�er to store events for that given child process. The �rst

argument to ELOG SETUP speci�es the log �lename of the memory bu�er to write

to. (In this example, a single log �le is used to store event trace from the four

processes.) The second argument speci�es the tag to associate with the memory

bu�er. A value of 0 causes the use of the default tag, which is derived internally by

the ELOG library from the process and thread ID. The third argument speci�es the

size for this bu�er. Using the default value of 0 will allocate space for approximately

1000 events. After the memory bu�er is set up, calls to ELOG LOG add the event

instances to the bu�er. Finally, ELOG OUTPUT
ushes the content of bu�er to the

log �le.

Once the log �le is generated, the user can visualize and analyze the data

using the TimeScan viewer. The TimeScan viewer provides a facility to display event

records and states as a function of time, with the Y-axis representing the trace from a

di�erent process or thread, and X-axis representing the time of the program execution.

The viewer also provides support for viewing a subset of events and states, for editing

the display symbol and color of the events and states, and for displaying histograms

of state durations [Ref. 13].

6. Summary

In this chapter, we provide an overview of some of the existing tools for per-

formance debugging and analysis of parallel programs. In particular, the dynamic

instrumentation and automatic search of performance bottlenecks technique imple-

mented by Paradyn, and the adaptive control and steering system for performance

optimization by Pablo are discussed. Recent research e�orts (Delphi: An integrated,

Language-Directed Performance Prediction, Measurement and Analysis Environment,

24

see [Ref. 12]) aim to combine both dynamic instrumentation and automatica search

for performance bottlenecks (W3 search model), with adaptive resource management,

compiler integration, and performance prediction capability into an integrated envi-

ronment.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

III. BACKGROUND ON GRAZE

Graze is a framework for the collection, visualization, and analysis of perfor-

mance data from applications with multiple threads of control. It was developed at

the University of Cincinnati and has been successfully used to identify performance

bottlenecks in a multi-threaded VHDL simulation application [Ref. 1]. Unlike the

traditional pro�ling tools such as prof and pixie, Graze lets the user specify exact

locations in the program and types of run-time data to be recorded. The data col-

lected by Graze are thread speci�c, that is data can be attributed to a speci�c thread

of the monitored program. The ability to examine user-speci�ed run-time data from

the applications and to correlate information from di�erent threads is important for

identifying possible performance problems such as the overhead due to communica-

tion and synchronization among threads in a program. Such problems are di�cult to

detect from the conventional pro�ling data.

The Graze framework is comprised of three components: a speci�cation lan-

guage, a data collection facility, and a generic data visualization facility. In the

following sections, we will describe each component of Graze in more detail.

1. Graze Speci�cation Language

The Graze speci�cation language [Ref. 1] is similar to the performance spec-

i�cation language used by PSpec. PSpec is a system designed for automated per-

formance veri�cation. PSpec uses assertion checking. Its speci�cation language is

designed for specifying performance assertions that are checked at run-time [Ref. 15].

For example, the following PSpec speci�cation de�nes two events, an interval, and an

assertion to check the performance of an I/O operation executed by a program:

timed event StartRead(); EndRead().

interval Read = s:StartRead, e: EndRead

metrics time= ts(e) - ts(s)

end Read.

assert { & r:Read: r.time < 10 ms }.

27

In this example [Ref. 15], StartRead and EndRead are declared to be timed events,

which means they have implicit timestamp attributes. A Read interval starts with

an event of type StartRead and ends with the next event of type EndRead after the

start event. The variables s and e signify the start and end events for an interval of

type Read. Each Read interval has a time metric whose value is the di�erence of its

start and end timestamps (ts is a PSpec built-in function that returns the timestamp

of an event.) The assert statement checks the elapsed time of any Read operation

performed by the program. The statement assert f & r:Read: r.time < 10 ms

g can be read as: \for all intervals, r of type Read, the value of r's time metric is at

most ten milliseconds."

The Graze speci�cation language uses several concepts from the PSpec lan-

guage; in particular, the event and interval constructs. An event denotes a speci�c

point of interest during the execution of an application; it has a type name and asso-

ciated attributes. Every Graze event has two intrinsic attributes: its owner (a value

that identi�es the thread that produced the event) and a timestamp. Additional at-

tributes can be speci�ed by the user to cause Graze to obtain more detailed run-time

information. Using a message passing application as an example, the following en-

tries specify events corresponding to the preparing, sending and receiving of a message

[Ref. 1]:

event Preparemsg() = diamond;

event Sendmsg(src, seq) = plus;

event Recvmsg(src, seq) = box;

The arguments src and seq are user-speci�ed attributes that identify the sender and

sequence number of the message sent and received. There are no hard-coded limits on

the number of such attributes that an event type may have, however, in the original

design of Graze these attribute values are restricted to the integer type. The tokens

after the `=' are directives to the Graze visualization programs; in this case they

specify the graphical symbol for depicting the respective event type.

28

A user can associate two related events by specifying an interval de�nition.

An interval is bounded by a designated start and end event type. For example, the

following speci�es the interval between Preparemsg and Sendmsg events:

interval Write [p: Preparemsg -> s:Sendmsg] = line;

In the Write interval de�ned above, the syntax p:Preparemsg ! s:Sendmsg tells

Graze that after it �nds each Preparemsg event it should �nd the next Sendmsg in

the same thread. Each matching pair of Preparemsg and Sendmsg events make up

an instance of interval Write.

In addition to the above interval speci�cation, Graze provides another way of

specifying the bounding condition between two events. Unlike the previous de�nition

of the Write interval, this bounding condition does not require that the start and end

events occur in the same thread. Such an interval speci�cation is given below:

interval Transit [s:Sendmsg -> r:Recvmsg] Match = line;

The keyword Match tells Graze to create instances of interval Transit by matching

all attribute values of the start and end events, except the timestamp and owner

of that event (thread identi�er). In this case, the bounding condition is equivalent

to s.src==r.src && s.seq==r.seq. This type of interval speci�cation is used for

describing related events occurring in di�erent threads. For example, in the message

passing application, messages are typically transmitted by one thread and received

by another thread within the same application. Therefore, using the Match interval

speci�cation is more appropriate.

Given an interval speci�cation, Graze allows for either forward or backward

searching of ending events. For example, in the following interval speci�cation:

interval BackTransit [r:Recvmsg <- s:Sendmsg] Match = line;

The left arrow symbol tells Graze to search backward in time from the point of a

Recvmsg event instance until a corresponding Sendmsg event with matching attribute

29

values is found. If a matching event is found, then the Graze visualization programs

marks this pair as an interval. These programs then move forward to the next starting

event and repeat the backward search for a matching event, until all intervals meeting

the speci�cation are found.

As discussed in the next two sections, in addition to the speci�cation language,

Graze consists of a Data Collection Facility and a number of visualization toolkits.

The speci�cation language described in this section is used by both of these compo-

nents, although some of the language is ignored by the Data Collection Facility. For

example, interval speci�cations and event shapes are ignored by the Data Collection

Facility because they are irrelevant during the run-time of the job being executed.

2. Data Collection Facility

Using the speci�cation provided by the user, the Graze framework automati-

cally generates a custom data collection facility for an application [Ref. 1]. A Graze

utility program builder (written using lex and yacc tools) parses the speci�cation

and generates a logging function for each event type. The function name is simply the

event type name with the su�x \ Stamp" appended to it. If the event type has op-

tional attributes, then the function has formal parameters matching those attributes

[Ref. 1]. For example, the C++ function prototypes for the Sendmsg and Recvmsg

events discussed above are:

void Sendmsg_Stamp (int src, int seq);

void Recvmsg_Stamp (int src, int seq);

The actual code created by the builder program is system- and thread-library depen-

dent. The original version ofGraze only generates logging functions for multi-threaded

program that use SUN Solaris thread library. The logging function writes event data

to a log �le. A logging function, when invoked, performs the following actions: (1)

determines the thread from which it is being called; (2) �nds the open �le descriptor

for the log �le associated with the calling thread; (3) invokes a system-dependent tim-

ing function to obtain a timestamp; (4) writes the event type, timestamp and actual

30

parameter values to the output �le. To minimize the overhead associated with the

data logging, Graze implements an internal bu�er for caching the event data. When

the bu�er is full, the data is written to the output �le. This technique minimizes the

number of writes performed.

To instrument an application, the programmer annotates the code using event

notation. An example of event notation is:

Sendmsg(self, SequenceNumber);

A Graze speci�cation language preprocessor should replace such lines with the call to

the corresponding function, which, in this case is: 1

void Sendmsg_Stamp(self, SequenceNumber);

After the application is executed, a set of log �les is produced. Each log �le contains

information about events collected from a single thread in the instrumented program.

The �lename of the log �le contains an integer that identi�es the thread associated

with the given event stream.

The structure of the log �le consists of a header record, followed by a stream

of event records. The integer value -1 is used as a sentinel to indicate the end of the

log �le. The header record consists of a single precision (4 byte) integer (0x12345670)

and a double precision (8 byte) integer (0x123456789abcdef0). Graze visualization

programs (nibble and gorge) read the header record to verify that input �les are

valid Graze log �les and to determine the byte ordering (endianess) of the data. Each

event record consists of an event type identi�er, timestamp, and a list of integer values

corresponding to the user speci�ed event attributes, if any. All values in the log �les

are either single of double precision integers. The following layout shows the structure

of the log �le:

1Currently, the programmer must insert calls to the event logging functions, but it would be easy

to modify the front-end of GNU compilers to perform this replacement.

31

header record:

integer (4 byte)

double precision integer (8 byte)

event records:

event type identifier (integer: 4 byte)

time stamp (double precision integer: 8 byte)

optional program state information

{ integer, integer, ... }

event type identifier (integer: 4 byte)

time stamp (double precision integer: 8 byte)

optional program state information

{ integer, integer, ... }

.

.

end marker: -1

The event type identi�er is simply a sequential integer value, starting at 0 that cor-

responds to the list of events given in the user speci�cation. Graze uses this integer

value to tag the event record in the log �le rather than using the actual string name

for both space e�ciency and to minimize conversion problems caused by executing

on one platform and displaying on another. The resolution of the timestamp depends

on the operating system and hardware. On the Solaris system, a system call, geth-

rtime(), returns the current wall clock time. This value is expressed as nanoseconds

since some arbitrary time in the past; it is not related to user CPU time or system

CPU time as returned by other system calls such as rusage().

3. Visualization Tools

Graze provides two tools for generic data visualization: gorge and nibble,

that can be used once the performance data has been collected. Gorge displays the

collected data with wall clock time increasing along the x-axis as shown in Figure

2. Nibble allows the user to graph generalized functions of statistical information

pertaining to speci�c events and intervals as shown in Figure 3. Both visualization

tools perform the following processing on the raw data: (1) they combine all of the

data from the log �les into a single event stream in memory; (2) they sort the event

32

Figure 2. Gorge can be used to display the interaction between threads in a message
passing application. For this example, event data from a total of 12 threads are
shown, with event data from thread 0 plotted at the top of the graph and event data
from thread 11 plotted at the bottom of the graph. The connecting lines between
threads indicate the previously de�ned Transit interval. Time increases along the
x-axis.

stream by time; and (3) they normalize the timestamp values so the �rst event in the

event stream has the value of 0. Once the data have been preprocessed in this way,

the visualization tools generate interval instances from the event stream by applying

the matching conditions as de�ned in the user speci�cations.

As shown in Figure 2, the gorge tool displays data using a time-space graph,

where the horizontal axis is the normalized time and the vertical axis represent data

from each threads. The user can control the amount of information displayed by

zooming in or out on the graph, and by selecting particular event, interval, and

33

Figure 3. Nibble graphing the number of Sendmsg and Recvmsg events as a function
of time in a message passing application. Time increases along the x-axis.

thread combinations [Ref. 1]. The gorge tool can provide a visual representation

of the interaction between threads (Figure 2) by displaying intervals as a group of

inter-connected lines.

As shown in Figure 3, the nibble tool is a generic statistical graphing tool for

plotting data versus time. The types of data that can be graphed include quantities

such as the total number of occurrences of an event or interval, a histogram of an

event's state attributes, and the average elapsed time of an interval (Figure 3). The

nibble tool provides mathematical operators that can be applied to the event or

interval data to calculate new statistical data types on the
y for display. For example,

graphs can be added, subtracted, multiplied, divided, and smoothed (Figure 4).

34

Figure 4. Nibble showing the number of Sendmsg and Recvmsg events in thread 0 and
1, and the di�erences (the lower line graph) between the number of messages received
by thread 1 and number of messages sent from thread 0. Time increases along the
x-axis.

4. Summary

In this chapter, we describe the three components of Graze: the speci�cation

language, the Data Collection Facility, and the visualization tools. The speci�cation

language lets the user de�nes event and interval types that are of interest for a

given application. The speci�cation de�ned by user is used to drive Data Collection

Facility and visualization tools. In particular, the event speci�cations are automat-

ically translated into data logging functions by the Data Collection Facility. The

programmer then annotates the application with the event point by inserting data

logging functions at the appropriate locations in the program. The data collected

35

from running the instrumented program, along with intervals constructed from the

event data and the user-provided speci�cation, can be plotted and analyzed by nibble

and gorge tools.

36

IV. GLIMPSE: GENERALIZING GRAZE

AND APPLYING IT TO MULTI-THREADED

JAVA PROGRAMS

This chapter describes the design and implementation issues faced when gener-

alizing Graze's Data Collection Facility. In particular, it addresses those issues faced

when attempting to monitor multi-threaded Java programs (Appendix A).

The �rst section of this chapter provides an overview of the design issues en-

countered when generalizing Graze to apply to Java programs. These issues include

mapping Java threads to event logs, accessing a high-resolution timer from within

a Java program, and generalization of the interval de�nition. The next section de-

scribes event collection code generation, where Graze's events are translated into

Java methods. The �nal section summarizes the design issues faced in implementing

Glimpse.

1. Design Considerations

As described in the previous chapter, Graze provides a utility program that

reads the user's speci�cation and automatically generates C++ functions. The user

then manually inserts events into the application. At execution time, event informa-

tion is written to a log �le. Glimpse provides similar capability for event information

collection to Java programs. The following design goals and constraints were consid-

ered when implementing the Glimpse data collection facility:

i) We want to re-use Graze visualization tools; this implies maintaining the

same data �le structure and log �lename convention in order to be compatible with

the existing visualization programs.

ii) The overhead incurred due to the data collection code should be kept to a

minimum. The modi�cations to the monitored programs should consist of a method

call to initialize the data collection package, method calls to write out event data,

37

and a method call to free up resources used by the data collection package prior to

program termination.

iii) To improve code modularity, the data logging methods, which depend on

the user speci�cation and are called (referenced) directly by the application program,

should be placed in a separate module from the rest of the data collection package.

This separation has the advantage that if the types of events to be monitored are

changed, only the module containing data logging methods needs to be re-generated

and re-compiled.

Based on these criteria, we implemented a new front-end program,

builder java and a new utility library, glimpse.jar. The builder java program

parses the speci�cation and generates a Java class that contains data logging meth-

ods. The glimpse.jar library contains utility functions such as those needed for

opening the log �les, writing to the log �les, and obtaining timestamp information.

Several issues arose as we implemented the Glimpse data collection facility. The

issues, and approaches we adopted, are described in the following sections.

a. Thread Naming

Graze stores event data from each thread in a thread-speci�c log �le.

To keep track of the log �le that a data logging function is writing to, Graze uses the

thread identi�er provided by the system. The value of the thread identi�er, which

is of type integer, is obtained at runtime by calling a SUN Solaris thread library

function. Based on this integer number, Graze determines the appropriate log �le

to which the event data is written. For every thread from which logging functions

are called, there is a corresponding log �le with the name of \log.fthread idg". This

naming scheme is also shared by Graze's visualization tools, which expect data �les

to have names such as log.2, where log.2 contains event data for thread 2, and where

the log �le for the �rst thread must be log.0.

This �lename convention assumes that the system thread library uses a

sequential numbering scheme, starting at 0, to keep track of threads that are created

38

by the program. It also assumes that threads used by the application exist for the

duration of the program execution. By default, the Java thread library uses a string

value such as \Thread-6" to represent a thread's unique identi�er. The initial value of

the integer in this string is system dependent. In some implementations of the JVM

this number starts at 1 (Win95, Sun Java version 1.1.5), and in others it starts with

4 or 5 (Silicon Graphics IRIX 6.2, Java version 1.1.6). Furthermore, many threads

in Java programs are short-lived. These are transient threads, created to perform a

speci�c task in the application program. Once that task is completed, the thread exits

the method it was created to execute and is garbage collected by the Java Virtual

Machine. Threads created to perform asynchronous input and output operations are

an example of short-lived threads.

Because threads in Java are inexpensive to create and destroy, an ap-

plication program can potentially use a large number of transient threads. After a

transient thread has exited, the Java thread library can re-use that same thread name

again for a newly created thread. Directly translating Graze code to Java could there-

fore result in event data from two di�erent threads being saved to the same log �le.

To resolve this thread names issue in a way that is consistent with Graze's current

log �lename convention so the existing visualization tools can read the data without

modi�cation, we designed and implemented a mechanism to associate each unique

Java thread with its own log �le.

One possible solution we considered was to require the monitored pro-

gram to explicitly identify each thread that it creates with a unique integer, starting

at 0. This approach will certainly prevent two threads from having the same name

and thus saving event data to the same �le. However it would mean calling the set-

Name(int id value) method (from the Java Thread Library) every time a thread

is created in the application. This approach would likely add additional code to the

monitored program as most programs do not explicit set the thread name but rather

let it default. Additionally, this solution shifts the task of creating and managing the

39

unique thread name to the programmer. Therefore, this solution would make using

the Glimpse Data Collection Facility unnecessarily tedious.

The approach we eventually adopted was to provide a mechanism for

mapping the Java threads to unique log �les that is transparent to the user (See

Figure 5). The thread name to log �le mapping is implemented using two utility

classes: ThreadData and ThreadPool. The ThreadPool object maintains a pool of

ThreadData objects. The ThreadData object contains various thread-speci�c infor-

mation such as the actual name of the thread and the associated log �lename. It also

contains methods for initializing the log �le, writing data, and closing the log �le.

With this solution, each time that an event logging method is invoked, that method

sends a request to the ThreadPool object. The ThreadPool object returns a refer-

ence to the ThreadData object assigned to the thread that invoked the event logging

method. If the ThreadData object for the calling thread is not found, then a new

ThreadData object is created and added to the pool, and the reference to that newly

created object is returned. The event logging method can then invoke the output

methods of the ThreadData object to write out the corresponding timestamp and the

user-de�ned event attributes to the appropriate log �le. Any future write requests by

the same thread will result in the ThreadPool returning a reference to the designated

ThreadData object.

To ensure that every ThreadData object is assigned to a di�erent log

�le, the ThreadData class maintains a global integer counter that is shared by all

objects of this class. This counter is initially set to zero, and its value is incremented

by one when a new ThreadData object is created. To ensure thread-safe behavior,

the action of obtaining and incrementing this counter value by a thread is mutually

exclusive from other threads that perform the same action. This mapping scheme

isolates the thread name used by the Java program from the actual log �lename, and

preserves the original log �lename convention.

40

Figure 5. Glimpse's Java utility classes for mapping threads to log �les.

41

To prevent saving event data from two di�erent threads to the same

�le, as in the cases of short-lived threads with duplicate thread names, the only

action required by the application is for it to notify the ThreadPool object when

a transient thread is terminated. This noti�cation is accomplished through the

closeThreadData() method that is executed immediately before a thread termi-

nates. This method removes the corresponding ThreadData object from the pool.

Then, when another thread with the same name appears, the ThreadPool object will

create a new ThreadData object and assign it a di�erent log �lename. 1

b. High Resolution Timer

The Java core package provides a timing routine currentTimeMillis()

in the java.lang.System class. This method returns the time, in milliseconds, be-

tween the current time and the standard base time known as \the epoch," 00:00:00

GMT on January 1, 1970. For performance monitoring with Graze, we need to record

the real time at which events occur during the program execution. For some appli-

cations, millisecond resolution of the standard Java timing routine is too coarse. We

investigated other alternatives for implementing a high resolution timer. One package

we looked at is the PortableTimer from the PTOOLS working group [Ref. 16]. The

PortableTimer speci�es a set of timing functions that vendors should provide on their

respective systems to facilitate performance measurement, and a sample implementa-

tion of the speci�cation for several of UNIX platforms. The sample implementations

use the standard UNIX functions to obtain wall clock, user and system time. Unfor-

tunately, implementations of this speci�cation are not yet available for our platforms.

Consequently we investigated building a custom timer. On the platform

(Silicon Graphics R10000 architecture) where we did most of the development and

1We note that in the current implementation of Glimpse, that the user must explicitly call

closeThreadData(). A commercial version of Graze could incorporate this call into the Garbage

Collector. Another possible solution would be for the Java Thread API to provide a way to register a

function that is invoked when a given thread exits. The ThreadData object would then automatically

register a closeThreadData() method, and thus eliminates the need for the user to explicitly call

this method.

42

code testing, a high resolution timing function is supported via a free-running 64-bits

hardware counter. To use this hardware counter for performance timing, we wrote a

custom timer that maps the location of the hardware counter to an address in the

user process space. The value of the hardware counter can then be obtained by simply

reading the value stored at that address. Depending on the particular version of the

R10000 architecture, the hardware counter has a resolution (the elapsed time between

ticks) between 21 and 800 nanoseconds. This resolution value can be dynamicallly

determined by querying the hardware at run time.

To access this custom timer (which is implemented in the C language)

from a Java program, we use the Java Native Interface (JNI) [Ref. 17]. JNI provides

a standard mechanism for a Java program to access functions in machine binary code.

The basic steps of using JNI are: (1) write a Java class that declares the C functions,

with the appropriate return types and calling arguments and a keyword `native' before

the method name; (2) use the Java utility tool javah, to translate these Java methods

to the equivalent C-language function prototypes and store them in a header �le; (3)

provide the implementation (in C or C++) of these functions as declared in the header

�le; and (4) create a dynamic shared library of these functions, i.e., the .dll library in

the Windows NT environment or .so library in the UNIX environment. For example,

the high-resolution timer used in our tests was implemented as follows:

final public class SystemTimer

{

..

/* Name of native function (implemented in the C-lang) that

returns time in nanosecond. The implementation of the

function gethrtime_ns() must be provided in a dynamic

shared library. In this example this library is called

libsgitimer.so . */

public static native long gethrtime_ns();

/* Static Initializer: Load the dynamic shared library. */

static {

System.loadLibrary("sgitimer");

43

}

/* SystemTimer method that returns real time in nanosecond.

It calls the native function gethrtime_ns(). */

public static long gettime_ns()

{

return gethrtime_ns();

}

..

}

The keyword native before the gethrtime ns() method declaration tells the JVM

that the actual implementation of this method in not in Java bytecodes, but ma-

chine binary codes. When the SystemTimer object is initialized, the JVM executes

System.loadLibrary("libname") to load the dynamic shared library containing the

high-resolution timer functions. The method SystemTimer.gettime ns() simply

calls the equivalent native function to obtain the real time in nanoseconds.

c. Generalization of the Interval De�nition

We recall from the previous discussion of Graze in the last chapter that

an interval is determined by two bounding events, and by the matching criteria, if

speci�ed, between the start and end events. The two criteria are to require that both

events occured on the same thread, or to match all event attributes (except for the

thread identi�er and timestamps) of the two bounding events. For example:

event Sendmsg(src, seq) = plus;

event Recvmsg(src, seq) = box;

interval Transit1 [s:Sendmsg -> r:Recvmsg] = line;

interval Transit2 [s:Sendmsg -> r:Recvmsg] Match = line;

Interval Transit1 requires that both Sendmsg and Recvmsg events occur in the same

thread; interval Transit2 requires that (src and seq) values are the same. We would

like to generalize the interval de�nition so that it allows speci�cation for partial match-

ing of attribute values, and Boolean relationships between the event's attributes. This

new syntax would support the following types of interval de�nitions:

44

interval Transit3 [s:Sendmsg -> r:Recvmsg]

{ s.src==r.src } = line;

interval Transit4 [s:Sendmsg -> r:Recvmsg] = line;

{ s.src==r.src && s.seq >= r.seq } = line;

interval Transit5 [s:Sendmsg -> r:Recvmsg] = line;

{ s.src!=r.src && s.seq < r.seq } = line;

Interval Transit3 requires only the src variable of Sendmsg and Recvmsg to match.

Interval Transit4 requires the src value to match and that seq value of Sendmsg

event is greater than or equal to the seq value of Recvmsg event. Under this expanded

syntax (see Appendix B), the operators for comparing the attribute values are:

>;>=;==; <=; <; ! = (IV.1)

To support this more general form of interval speci�cation, additional production rules

are added to the lexical parser of the glimpse, and the internal data structure used

by the semantic analyzer is expanded to include the additional clauses for evaluating

the attribute data between the two events.

2. Event Collection Code Generation

We created a front-end program, builder java, to automatically create ap-

plication speci�c Java class that contains data logging methods. For each event type

de�ned in the user speci�cation, builder java creates a corresponding static method.

As an example we consider the speci�cation for message passing events:

event Sendmsg(src, seq)

and

event Recvmsg(src, seq)

The Java class, and its methods, created from the above speci�cation are:

45

final public class GzEvent

{

static ThreadPool pool;

final static boolean DISABLE_GLIMPSE=false;

final static boolean NATIVE_TIMER=false;

static SystemTimer st;

static public void init()

{

if (DISABLE_GLIMPSE) return;

pool=new ThreadPool();

if (NATIVE_TIMER==true) st=new SystemTimer();

}

static public void init(String data_dir)

{

if (DISABLE_GLIMPSE) return;

pool=new ThreadPool(data_dir);

if (NATIVE_TIMER==true) st=new SystemTimer();

}

static public void close()

{

if (DISABLE_GLIMPSE) return;

pool.closeAll();

}

static public long gettime()

{

long ts;

if (NATIVE_TIMER)

ts=st.gethrtime_ms();

else

ts=System.currentTimeMillis()*1000;

return ts;

}

static public void Recvmsg(int src, int seq)

{

if (DISABLE_GLIMPSE) return;

long ts=GzEvent.gettime();

ThreadData handle= (ThreadData) pool.getThreadSpecific();

handle.putout(0);

handle.puttime(ts);

handle.putout(src);

handle.putout(seq);

46

return;

}

static public void Sendmsg(int src, int seq)

{

if (DISABLE_GLIMPSE) return;

long ts=GzEvent.gettime();

ThreadData handle= (ThreadData) pool.getThreadSpecific();

handle.putout(1);

handle.puttime(ts);

handle.putout(src);

handle.putout(seq);

return;

}

static public void closeThreadData()

{

if (DISABLE_GLIMPSE) return;

pool.closeThreadData(Thread.currentThread());

}

}

The name of the generated event logging class defaults to GzEvent, although

the user can specify a di�erent name by passing an optional argument to the

builder Java program. Calls to the SystemTimer methods to get timestamp val-

ues, and to write out the values of variables src and seq are automatically in-

serted into the body of the event logging methods, GzEvent.Recvmsg(src,seq) and

GzEvent.Sendmsg(src,seq). A
ag, NATIVE TIMER, can be set to allow the logging

methods to use either the standard Java timing method, or the native timing func-

tion, if one is provided via the JNI mechanism as discussed in the previous section.

To instrument the application, the programmer edits the source code and annotates it

using GzEvent.init(), GzEvent.Recvmsg(), and GzEvent.Sendmsg(). 2 Two ver-

sions of the GzEvent.init() methods are provided{one takes an optional argument

to specify the directory to which the log �les are to be written. If not speci�ed, the

current working directory of the monitored program is used. As stated earlier, the

2In the current implementation the programmer must also manually insert a call to the

GzEvent.close() method. See appendix C on using Java Finalize facility.

47

Figure 6. Steps for collecting event data: 1) code generation, 2) compiling the moni-
tored program, 3) loading dynamic library during execution. Arrow indicates depen-
dency at the various stages.

GzEvent.closeThreadData() method noti�es the ThreadPool object that the calling

thread is about to exit and that the log �le associated with the exiting thead should

be closed. This call is only needed to handle tranisent threads; it prevents data from

two di�erent threads being written to the same log �le. Finally, GzEvent.close()

terminates event logging and closes all log �les. A
ag, DISABLE GLIMPSE, allows the

user to turn o� the data logging if the application no longer requires performance

monitoring.

48

To compile the monitored program, both the GzEvent.java �le and

glimpse.jar utility library need to be supplied to the Java compiler (See Figure 6).

The glimpse.jar library and dynamic shared library for the native high-resolution

timer are then loaded in by the JVM during the execution of the monitored program.

3. Summary

In this chapter, we described the porting issues encountered while adapting

Graze to monitor multi-threaded Java programs, and the approaches we used to

resolve these issues. In particular, the issues with mapping application threads to

event log �lename, obtaining high-resolution timestamp information at run-time, and

generalizing the interval de�nition. In the last section, we descibed how Glimpse

translates user-de�ned event speci�cation into the data logging code that is used to

instrument the application of interest.

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

V. EXPERIENCES USING GLIMPSE WITH

JAVA

In this chapter we describe the result from testing Glimpse with a multi-

threaded Java program. By visualizing the event data collected from execution of

the test program and intervals derived from the event data, and by relating these

events and intervals to the actions performed by a test program, we demonstrate that

Glimpse is working properly.

The �rst section of this chapter describes the structure of a Java example

program and the expected interactions between the various threads in this application.

The next section describes the event and interval speci�cations that were used to

collect the runtime data, and to visualize that data. Section three describes the data

gathered from running the test program with two di�erent inputs. By relating the

events and intervals to the expected behaviors of the application, we demonstrated

the correctness of the test program and Glimpse's Data Collection Facility. In the

�nal section, we summarize the results from testing Glimpse with a multi-threaded

Java program.

1. Description of the StopLight Program

To evaluate the Glimpse software, we applied it to a Java program called

\StopLight" that simulates tra�c
ow at an intersection. This program was origi-

nally written to show how to use Java threads in a concurrent program. It uses car,

intersection, and timer objects to model the
ows through the intersection. Each

car object is assigned a direction of movement (North-South or East-West) and a

departure time. The departure time determines when a car will arrive at the inter-

section. The timer object controls the tra�c lights of the intersection object. Each

timer object is initialized with a timeslice value. When that timeslice value expires,

the timer object toggles the tra�c lights so that the
ow direction at the intersec-

tion alternates between North-South and East-West. Two pair of timers are used to

51

control the tra�c light at the intersection; their function will be described in next

paragraph. Cars traveling in di�erent directions can arrive randomly at the inter-

section, and more than one car can queue up at the intersection while waiting for

the light to change. In this program, a car is not allowed to change direction once

it starts running; furthermore there is only one intersection through which all cars

must travel.

An intersection should maximize the number of cars passing through, and

minimize the time that a car is waiting at the intersection. For example, the green

light should stay on longer for the direction with a heavy tra�c
ow, and should turn

red quickly if no more cars are passing through. To implement this behavior in the

StopLight program, a timer called LargeTimer (that is a timer with a longer expiration

value) and another timer called SmallTimer are used concurrently to control the tra�c

light. Both timers are started when the intersection object is �rst initialized. Each

time a car passes through the intersection without stopping, the currently active

SmallerTimer is stopped and a new one is started. Stopping and restarting this

SmallTimer has the e�ect of prolonging the green light for that given direction. Thus,

if a group of cars, traveling along the same direction, arrives at the intersection at close

intervals, then the tra�c light for that direction will tend to stay green. However, if

there is a long gap between cars travelling along the same direction arriving at the

intersection, then the SmallTimer will most likely expire before the next car can reach

the intersection. When the SmallTimer expires it forces the tra�c lights to change,

thus allowing the cars traveling along the other direction to proceed. This control

logic ensures that cars waiting at the intersection will not wait longer than necessary

(not greater than the expiration value of the SmallTimer) if the cross tra�c is very

sparse.

The LargeTimer ensures that both directions are given their fair share of green

light. For example, consider the case where there is a caravan of cars traveling along

the North-South direction, while only a few cars are traveling along the East-West

52

direction. If the gaps between the vehicles in the caravan are very short and there

were no LargeTimer object, it is likely then that North-South bound cars could keep

extending the tra�c light in their favor, and the East-West bound cars would not be

able to proceed until all the North-South bound cars were through. The LargeTimer

prevents this unfair situation from occurring. Regardless of the number of times that

a SmallTimer is restarted, the LargeTimer will eventually expire and force the tra�c

light to switch. This design guarantees that the maximum waiting time of any cars

will not exceed some threshold value, regardless of the uneven tra�c distribution

between the two
ow directions.

In the implementation of the StopLight program, each car and timer object

executes as a separate Java thread. Timer threads are assigned higher priority than

car threads. The higher priority associated with the timer thread allows it to interrupt

other threads in order to change the tra�c light at the intersection. The critical

sections of this program are associated with changing the tra�c light variable of the

intersection object. To ensure the synchronized access to the tra�c light variable,

the intersection object acts as the monitor to the critical sections. (See Appendix A

for a discussion on the Java monitor object and synchronization.)

2. De�ning Events and Intervals For the StopLight
Program

To evaluate the Glimpse package with the Stoplight program, we de�ne the

following events that are relevant to the car, timer and the intersection objects. For

the car objects, we de�ned three types of events: StartMotor, ArriveIntersection

and LeaveIntersection. These events correspond to 1) when the car is started, 2)

when it reaches the intersection, and 3) when the car has crossed the intersection. In

term of actual location in the StopLight program code, these events correspond to

1) when the car object enters its run() method, 2) when the car object invokes the

enter() method of the intersection object, and 3) when the car object returns from

the enter() method of the intersection object.

53

For the intersection object we de�ned the Stop, Go, and NoWait events. The

Stop event occurs when a car reaching the intersection has to wait for the light to

change. The Go event occurs when a car waiting at the intersection can proceed. The

NoWait event occurs when the tra�c light direction and car direction are the same,

in that case the car just proceeds through the intersection without stopping. The

following code shows the locations of event collection points in the Intersection

object:

public class Intersection {

public int traffic_light ;

public LargeTimer MajorTimer;

public SmallTimer MinorTimer;

. . .

public synchronized void enter(Car cx, int car_direction)

{

/* car going at NORTH or SOUTH direction and so is the current

traffic light for the intersection. */

if (traffic_light == NSDirection &&

(car_direction == NORTH || car_direction == SOUTH))

{

GzEvent.NoWait(traffic_light);

MinorTimer.stop();

MinorTimer = new SmallTimer(200,this);

}

/* car going at EAST or WEST direction and so is the current

traffic light for the intersection. */

else if (traffic_light == EWDirection &&

(car_direction == EAST || car_direction == WEST))

{

GzEvent.NoWait(traffic_light);

MinorTimer.stop();

MinorTimer = new SmallTimer(200,this);

}

/* car direction and traffic light direction does not match,

car must wait until the light changed. */

else {

try {

GzEvent.Stop(traffic_light);

wait();

54

GzEvent.Go(traffic_light);

} catch (Exception e) {}

}

}

}

In the enter() method of the Intersection object, the �rst two `if' statement blocks

handle the cases where the car direction matches the tra�c light direction. In these

two if statement blocks, the old SmallTimer is killed and a new SmallTimer is

started as per discussion in section one, and execution continues without blocking. In

the third if statement block, the execution of the enter() method is blocked on the

call to the wait() method. This car will remain blocked until another thread, i.e.,

the timer thread, acts on the traffic light variable and invokes the notifyall()

method. (See Appendix A on the wait() and notifyall() mechanism for synchro-

nizing access to shared variables from multiple threads.)

For the timer objects, we de�ne the LightChanged event. This event occurs

when the timer acts on the tra�c light variable of the Intersection object. We also

de�ned the SmallTimer and LargeTimer events to indicate when a timer is instanti-

ated. The following code shows the locations where we place the LightChanged event

in the LargeTimer object:

public class LargeTimer extends Thread {

private int timeslice;

private Intersection in;

. . .

public void run()

{

try

{

/* Sleeping until timeslice expired */

sleep(timeslice);

/* Enter critical section and switch the traffic light

variable of the Intersection object. Notify any other

threads waiting on the Intersection object that

traffic light has changed. */

synchronized (in)

55

{

in.MinorTimer.stop();

if (in.traffic_light==NSDirection) {

in.traffic_light = EWDirection;

GzEvent.LightChanged(EWDirection);

in.notifyAll();

}

else

{

in.traffic_light = NSDirection ;

GzEvent.LightChanged(NSDirection);

in.notifyAll();

}

/* Reset all timers prior to exiting. */

in.MajorTimer = new LargeTimer(800,in);

in.MinorTimer = new SmallTimer(200,in);

GzEvent.closeThreadData();

}

} catch (InterruptedException e) { }

}

}

Upon the expiration of the timeslice, the timer (i) toggles the tra�c light variable of

the Intersection object, (ii) noti�es any other threads waiting for the tra�c light to

change, and (iii) resets the Large and Small timers controlling the Intersection object

before exiting.

The event speci�cation for the StopLight program is shown below. Additional

attribute information is recorded for some of the events. For examples, for events

associated with the car objects, the direction of car movement is recorded; for events

associated with the intersection and timer objects, the direction of the tra�c light is

saved to the log �les.

graze msgs

. . .

event Stop(traffic_light_direction) = symbol(plus);

event Go(traffic_light_direction) = symbol(diamond);

event NoWait(traffic_light_direction) = symbol(x);

event SmallTimer(traffic_light_direction) = symbol(x);

56

event LargeTimer(traffic_light_direction) = symbol(plus);

event LightChanged(traffic_light_direction) = symbol(diamond) ;

event ArriveIntersection(car_direction) = symbol(x) ;

event LeaveIntersection(car_direction) = symbol(plus) ;

event StartMotor = symbol(box);

. . .

end msgs.

From the event de�nitions, we specify the following intervals to be constructed

and visualized:

graze msgs

. . .

interval StartMotorArrInt [StartMotor, ArriveIntersection]=rectangle;

interval ArriveLeave [ArriveIntersection,LeaveIntersection]=rectangle;

interval ArriveAndStop [ArriveIntersection, Stop]=rectangle;

interval StopAndGo [Stop, Go]=rectangle;

interval GoAndLeaveInt [Go, LeaveIntersection] = rectangle;

interval STimerLtChanged [SmallTimer, LightChanged] = rectangle;

interval LTimerLtChanged [LargeTimer, LightChanged] = rectangle;

interval LtChangedAndGo [LightChanged <- Go] Match = line;

interval NoWaitSmallTimer [NoWait,SmallTimer] Match = line;

. . .

end msgs.

StartMotorArrInt shows the interval between when a car starts and when it reaches

the intersection. The ArriveLeave interval depicts cars that arrive at the inter-

section and go through it without stopping, whereas ArriveAndStop interval shows

cars that arrive at the intersection and wait for the light to changed. The inter-

val StopAndGo shows how long a car spends waiting for the light to change. The

STimerLtChanged and LTimerLtChanged depict the intervals between when the timer

is started and when it actually acts to change the tra�c light. The LtChangedAndGo

and NoWaitSmallTimer intervals associate events occurring on di�erent threads.

3. Visualizing the Result

We used two di�erent tra�c patterns to test the working of Glimpse with

the StopLight program. The tra�c patterns are con�gured by setting the departure

57

time and the direction of the cars. In test case one, cars are initialized with random

departure time and di�erent directions. In test case two, a stream of cars traveling

along the same direction is started at fairly close intervals. This steady stream of

tra�c
ow is interspersed with a few cars traveling along the other direction. From

the previous discussion on the StopLight program, we would expect that in test

case one, where cars arrive randomly at the intersection while traveling at di�erent

direction, it is more likely that we should see the SmallTimer acts to switch the

tra�c light. In test case two, a steady
ow of cars traveling along the same direction

arriving at the intersection will tend to prevent the SmallTimer from changing the

tra�c light, but will favor the LargeTimer.

We ran the StopLight program with the two test cases multiple times on a

SGI workstation (with the Java SDK 1.1.6 environment). The results vary slightly

from run to run, but the general pattern is consistent between di�erent runs. The

following plots show the representative results.

a. Experiment One

In Figure 7, the interval StartMotorArrInt are plotted using the gorge

visualization tool. The symbol x at the right edge of the horizontal bar indicates when

a car arrives at the intersection. Because of the di�erent departure times assigned to

the cars, car objects instantiated later in the main program can reach the intersection

earlier. For example, car 4 reaches the intersection before car 3.

In Figure 8, we added the StopAndGo interval to the plot. The

StopAndGo interval depicts a car that must stop at the intersection for the light

to change. From the plot, we see that car 1, 3, 5, 9, 10, 12 stopped at intersection be-

fore they were allowed to continue through. Next, we add the events associated with

timer objects to the plot. The events LargeTimer and SmallTimer are depicted by the

symbol + and the symbol x respectively. The �rst occurrence of a pair of LargeTimer

and SmallTimer are associated with the instantiation of the Intersection object.

These two events are shown at top of the plot (Figure 9) before the horizontal bars

58

Figure 7. Plot of StartMotorArrInt intervals for experiment one. The horizontal
bar indicates the interval between when a car is started and when it reaches the
intersection. The time scale increases to the right. There are 13 cars in this test case;
they are displayed from top to bottom.

59

Figure 8. Plots of the StartMotorArrInt and StopAndGo intervals for experiment
one. The StopAndGo intervals are bound by + and diamond symbols. Car 1, 3, 5, 9,
10, 12 have StopAndGo interval.

60

associated with car objects. Subsequently, we saw more instances of the SmallTimer

event further down on the plot. The occurrences of these SmallTimer events are

made clear in the next �gure.

In Figure 10, we added the interval NoWaitSmallTimer to the plot.

The NoWaitSmallTimer interval is represented by the vertical line that connects the

right edge of the StartMotorArrInt interval in a car thread to the symbol x denot-

ing the instantiation of a new SmallTimer object in a timer thread. There are 7

NoWaitSmallTimer intervals originating from car 2, 4, 6, 7, 8, 11, and 13; they cor-

respond to cars that did not have to wait at the intersection for the light to change.

Recall from the discussion of the StopLight program, cars that go through intersection

without stopping are extending the duration of the tra�c light in their direction by

resetting the controlling timers. The interval NoWaitSmallTimer corresponds to this

action, and the gorge provides a visual representation of this program behavior.

In Figure 11, We add StimerLtChanged and LtChangedAndGo inter-

vals to the plot. The StimerLtChanged represents the interval between when a small

timer is created and when its timeslice value has expired, at which time the small

timer changes the tra�c light direction. The StimerLtChanged interval is depicted

as horizontal bars bounded by the x and diamond symbols. These StimerLtChanged

intervals are shown below the car threads in Figure 11, except for the �rst instance

of StimerLtChanged interval which is created by the Intersection object. From

the plot we see that not every small timer thread contains a StimerLtChanged in-

terval. This is because some small timers are preempted by cars going through the

intersection, as discussed in the previous paragraph. The LtChangedAndGo represents

the interval between when a car object stops at an intersection and when it starts

moving again as the result of the expiring timer changing the tra�c light direction.

The LtChangedAndGo is depicted as vertical line connecting the right edge of the

horizontal bars of the LtChangedAndGo intervals to the right edge of the StopAndGo

intervals in the car threads. As can be seen from Figure 11, LtChangedAndGo intervals

61

Figure 9. Plot of LargeTimer and SmallTimer events with StartMotorArrInt and
StopAndGo intervals in experiment one. The symbol + and symbol x depict when the
LargeTimer and SmallTimer objects are instantiated in the StopLight program. The
�rst pair of timers is created (shown at the top of the plot) when the Intersection
object is initialized, that is before any car objects are created.

62

Figure 10. NoWaitSmallTimer interval is represented by the vertical line connection
between the symbol x in the car thread and symbol x in the SmallTimer. There are
7 NoWaitSmallTimer intervals, originating from cars 2, 4, 6, 7, 8, 11, and 13. These
intervals represent the new SmallTimer objects created by cars that did not have to
stop at the intersection.

63

Figure 11. Interval StimerLtChanged is shown as the horizontal bar (between sym-
bol x and symbol diamond) in timer threads. These intervals indicate the small
timers that change the tra�c light as the result of its timeslice value expiring.
The interval LtChangedAndGo is shown as a vertical line from the right edge of the
StimerLtChanged interval of the timer thread to the right edge of the StopAndGo

interval of the car threads. These intervals represent the noti�cation received by the
car threads when the tra�c light is changed by the timer threads.

64

connects car 1, 3, 5, 9, 10, and 12 to StimerLtChanged interval. These are cars that

were waiting at the intersection for the light to change. The interactions between

the timer threads and car threads are consistent with the tra�c distribution used in

this test case and the design of the StopLight program. The visualization of intervals

and events allow us to correlate the execution of the application program with the

semantics of the program code.

b. Experiment Two

In this experiment, we execute the annotated test program using a

di�erent tra�c pattern. This tra�c pattern consists of cars arriving at the intersection

at a constant interval, as shown by the StartMotorArrInt intervals in Figure 12. In

Figure 13, we added the StopAndGo interval to the plot. We see that cars 1, 5, 12,

and 13 must stop at the intersection before proceeding.

In the next Figure (Figure 13), the events associated with the creation

of SmallTimer and LargeTimer are shown. These events are associated with the car

that did not have to stop at intersection. The interval NoWaitSmallTimer in Figure

15 clearly shows the relationship of car threads creating the new timer threads.

The di�erence between experiment one and experiment two is that in

experiment two only one of the SmallTimer threads ever reaches expiration. For the

experiment two, there is a steady stream of cars going through the intersection, so

the exiting SmallTimer, except for the last one, is always being re-started. Recall

that from the discussion of the StopLight program, if cars repeatedly passing through

the intersection constantly extend the tra�c light, at some point the LargeTimer will

act to change the tra�c light. This is indeed what is shown by the LtimerLtChanged

interval in Figure 16. The LargeTimer expired and allowed car 5, which has been

waiting at the intersection, to proceed. When the LargeTimer expired, it created

a pair of SmallTimer and LargeTimer. The event SmallTimer and LargeTimer,

and the interval StimerLtChanged are shown at the bottom right of Figure 16. The

expiration of the last SmallTimer allows cars 12 and 13 to proceed. This is shown by

65

